extension | φ:Q→Aut N | d | ρ | Label | ID |
C22.1(C3×C4○D4) = C3×C8○D8 | φ: C3×C4○D4/C2×C12 → C2 ⊆ Aut C22 | 48 | 2 | C2^2.1(C3xC4oD4) | 192,876 |
C22.2(C3×C4○D4) = C3×C8.26D4 | φ: C3×C4○D4/C2×C12 → C2 ⊆ Aut C22 | 48 | 4 | C2^2.2(C3xC4oD4) | 192,877 |
C22.3(C3×C4○D4) = C3×C23.36C23 | φ: C3×C4○D4/C2×C12 → C2 ⊆ Aut C22 | 96 | | C2^2.3(C3xC4oD4) | 192,1418 |
C22.4(C3×C4○D4) = C3×C22.32C24 | φ: C3×C4○D4/C2×C12 → C2 ⊆ Aut C22 | 48 | | C2^2.4(C3xC4oD4) | 192,1427 |
C22.5(C3×C4○D4) = C3×C22.33C24 | φ: C3×C4○D4/C2×C12 → C2 ⊆ Aut C22 | 96 | | C2^2.5(C3xC4oD4) | 192,1428 |
C22.6(C3×C4○D4) = C3×D4.3D4 | φ: C3×C4○D4/C3×D4 → C2 ⊆ Aut C22 | 48 | 4 | C2^2.6(C3xC4oD4) | 192,904 |
C22.7(C3×C4○D4) = C3×D4.4D4 | φ: C3×C4○D4/C3×D4 → C2 ⊆ Aut C22 | 48 | 4 | C2^2.7(C3xC4oD4) | 192,905 |
C22.8(C3×C4○D4) = C3×D4.5D4 | φ: C3×C4○D4/C3×D4 → C2 ⊆ Aut C22 | 96 | 4 | C2^2.8(C3xC4oD4) | 192,906 |
C22.9(C3×C4○D4) = C3×C22.45C24 | φ: C3×C4○D4/C3×D4 → C2 ⊆ Aut C22 | 48 | | C2^2.9(C3xC4oD4) | 192,1440 |
C22.10(C3×C4○D4) = C3×C22.46C24 | φ: C3×C4○D4/C3×D4 → C2 ⊆ Aut C22 | 96 | | C2^2.10(C3xC4oD4) | 192,1441 |
C22.11(C3×C4○D4) = C3×C22.47C24 | φ: C3×C4○D4/C3×Q8 → C2 ⊆ Aut C22 | 96 | | C2^2.11(C3xC4oD4) | 192,1442 |
C22.12(C3×C4○D4) = C3×C42⋊4C4 | central extension (φ=1) | 192 | | C2^2.12(C3xC4oD4) | 192,809 |
C22.13(C3×C4○D4) = C12×C22⋊C4 | central extension (φ=1) | 96 | | C2^2.13(C3xC4oD4) | 192,810 |
C22.14(C3×C4○D4) = C12×C4⋊C4 | central extension (φ=1) | 192 | | C2^2.14(C3xC4oD4) | 192,811 |
C22.15(C3×C4○D4) = C3×C23.7Q8 | central extension (φ=1) | 96 | | C2^2.15(C3xC4oD4) | 192,813 |
C22.16(C3×C4○D4) = C3×C23.34D4 | central extension (φ=1) | 96 | | C2^2.16(C3xC4oD4) | 192,814 |
C22.17(C3×C4○D4) = C3×C42⋊8C4 | central extension (φ=1) | 192 | | C2^2.17(C3xC4oD4) | 192,815 |
C22.18(C3×C4○D4) = C3×C42⋊5C4 | central extension (φ=1) | 192 | | C2^2.18(C3xC4oD4) | 192,816 |
C22.19(C3×C4○D4) = C3×C23.8Q8 | central extension (φ=1) | 96 | | C2^2.19(C3xC4oD4) | 192,818 |
C22.20(C3×C4○D4) = C3×C23.23D4 | central extension (φ=1) | 96 | | C2^2.20(C3xC4oD4) | 192,819 |
C22.21(C3×C4○D4) = C3×C23.63C23 | central extension (φ=1) | 192 | | C2^2.21(C3xC4oD4) | 192,820 |
C22.22(C3×C4○D4) = C3×C24.C22 | central extension (φ=1) | 96 | | C2^2.22(C3xC4oD4) | 192,821 |
C22.23(C3×C4○D4) = C3×C23.65C23 | central extension (φ=1) | 192 | | C2^2.23(C3xC4oD4) | 192,822 |
C22.24(C3×C4○D4) = C3×C24.3C22 | central extension (φ=1) | 96 | | C2^2.24(C3xC4oD4) | 192,823 |
C22.25(C3×C4○D4) = C3×C23.67C23 | central extension (φ=1) | 192 | | C2^2.25(C3xC4oD4) | 192,824 |
C22.26(C3×C4○D4) = C6×C42⋊C2 | central extension (φ=1) | 96 | | C2^2.26(C3xC4oD4) | 192,1403 |
C22.27(C3×C4○D4) = D4×C2×C12 | central extension (φ=1) | 96 | | C2^2.27(C3xC4oD4) | 192,1404 |
C22.28(C3×C4○D4) = Q8×C2×C12 | central extension (φ=1) | 192 | | C2^2.28(C3xC4oD4) | 192,1405 |
C22.29(C3×C4○D4) = C6×C4⋊D4 | central extension (φ=1) | 96 | | C2^2.29(C3xC4oD4) | 192,1411 |
C22.30(C3×C4○D4) = C6×C22⋊Q8 | central extension (φ=1) | 96 | | C2^2.30(C3xC4oD4) | 192,1412 |
C22.31(C3×C4○D4) = C6×C22.D4 | central extension (φ=1) | 96 | | C2^2.31(C3xC4oD4) | 192,1413 |
C22.32(C3×C4○D4) = C6×C4.4D4 | central extension (φ=1) | 96 | | C2^2.32(C3xC4oD4) | 192,1415 |
C22.33(C3×C4○D4) = C6×C42.C2 | central extension (φ=1) | 192 | | C2^2.33(C3xC4oD4) | 192,1416 |
C22.34(C3×C4○D4) = C6×C42⋊2C2 | central extension (φ=1) | 96 | | C2^2.34(C3xC4oD4) | 192,1417 |
C22.35(C3×C4○D4) = C3×C23⋊2D4 | central stem extension (φ=1) | 96 | | C2^2.35(C3xC4oD4) | 192,825 |
C22.36(C3×C4○D4) = C3×C23⋊Q8 | central stem extension (φ=1) | 96 | | C2^2.36(C3xC4oD4) | 192,826 |
C22.37(C3×C4○D4) = C3×C23.10D4 | central stem extension (φ=1) | 96 | | C2^2.37(C3xC4oD4) | 192,827 |
C22.38(C3×C4○D4) = C3×C23.78C23 | central stem extension (φ=1) | 192 | | C2^2.38(C3xC4oD4) | 192,828 |
C22.39(C3×C4○D4) = C3×C23.Q8 | central stem extension (φ=1) | 96 | | C2^2.39(C3xC4oD4) | 192,829 |
C22.40(C3×C4○D4) = C3×C23.11D4 | central stem extension (φ=1) | 96 | | C2^2.40(C3xC4oD4) | 192,830 |
C22.41(C3×C4○D4) = C3×C23.81C23 | central stem extension (φ=1) | 192 | | C2^2.41(C3xC4oD4) | 192,831 |
C22.42(C3×C4○D4) = C3×C23.4Q8 | central stem extension (φ=1) | 96 | | C2^2.42(C3xC4oD4) | 192,832 |
C22.43(C3×C4○D4) = C3×C23.83C23 | central stem extension (φ=1) | 192 | | C2^2.43(C3xC4oD4) | 192,833 |
C22.44(C3×C4○D4) = C3×C23.84C23 | central stem extension (φ=1) | 192 | | C2^2.44(C3xC4oD4) | 192,834 |